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A characterization of any solution to the minimization problem

min{llx-zll :xeK:=CnA-1d}

is given, where A is a continuous linear map from a real Banach space X to a
locally convex topological space Y, z e X, C c X is a closed convex set and de AC.
The resulting characterization for the case that X is a Hilbert space is that the
projection PK(z) of z to K is Pclzo + z) for some Zo e ran A* provided de int AC.
An analogous characterization is also obtained for the solution to the nonnegative
best interpolation problem in the L p norm. ce, 1993 Academic Press. Inc.

1. INTRODUCTION

Let X be a real Banach space, Y a locally convex topological linear
space, and A: X --+ Y a continuous linear map. For a closed convex set
C c X, Z E X, and dEY, we are interested in characterizing the solutions to
the following constrained best interpolation problem

min { II x - Z II : x EK := en A - I d}. (1.1 )

Any solution X o to (1.1) is also called a projection of z to the closed convex
set K and is denoted by PK(z) if it is unique.

In the particular case X = Lp(Q) with 1 < P < 00, Y = IR n
, Z = 0, and C

the cone consisting of all nonnegative functions in Lp(Q), [M85] has
shown that the solution to (1.1) is of the form

(1.2 )

for any zSEranA* such that (zn~(p-I)EA-ld, provided dEintAC. The
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representation of the solution obtained in [M85] for the case that
d¢ int AC is

(1.3 )

for some Q o c Q, under the assumption that Lp(Q) be separable. The
importance of (1.2) or (1.3) is that the infinite-dimensional problem (1.1)
is converted to a nonlinear problem of finite dimension in this case. Unfor
tunately, the subdomain Q o in (1.3) is not specified explicitly. A further
question is whether (1.2) and (1.3) hold when dim Y = 00.

In case X and Yare Hilbert spaces and C is a closed convex cone with
vertex 0, (1.1) has been investigated intensively in [M88, C89, C90]. When
Y = IR" and z = 0, it is proved in [M88] that, under the condition

{A*y: (y, d)~O} "Co
= {O}, ( 1.4 )

the solution to (1.1), i.e., the projection PK(O) to K, can be represented by

(1.5)

for any Zo E ran A * satisfying Pc(zo) E A - Id. In this case, as proved in
[C90], the condition (1.4) is equivalent to the following so-called Slater
condition [878, p. 159]

dEintAC. (1.6 )

We note that in general the condition A -Id" int C #- 0 used in [M88] is
stronger than (1.6). In an effort to generalize the formula (1.5) to the case
Z #- 0 and/or dim Y = 00, [C90] introduces the following condition, called
CHIP (conical hull intersection property),

S(K; xo) = S(C; x o)" ker A, (1.7)

where S(K; x o) is the translation of the support cone for Kat x o, i.e.,

Under the CHIP condition (1.7), for the cone-constrained best interpola
tion problem (1.1) in Hilbert spaces, the characterization of the projection
PK(z) to K obtained in [C90] is

(1.8 )

Condition (1.8) is a generalization of (1.5) since, as proved in [C90], the
CHIP condition (1.7) is satisfied as long as the Slater condition (1.6) holds.
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As a continuation of [C90], [C89] proves that CO n PK(z»-l + ran A* is
closed if the Slater condition (1.6) is satisfied, even for the case that C
is not just a cone. Therefore, in this case, their characterization for the
projection is

(1.9)

for any zoEranA* such that PdZ+Zo)EA-1d.
In this article, we tackle the problem (l.l) in a unified way, i.e., we con

sider the problem in the case that X is any real Banach space and Y is any
locally convex linear topological space. In particular, the characterizations
obtained in [M85, M88, C89, C90] are special cases of the results
presented in this article. Moreover, we generalize the results in [M8S] to
the case dim Y = 00. The improved result for (1.3) obtained without the
condition that Lp(Q) be separable in this article is that

(1.10)

for any zti E ran A t such that (zti) ~(p - I) EA - 'd, where A I is the restriction
of A to the smallest closed subspace X o containing K. In contrast to the
approaches taken in [M85, M88, C89, C90], we derive (1.2) and (1.9)
from the Kuhn-Tucker minimization condition for (l.l). The unified treat
ment enables us to show that the Slater condition (1.6) is necessary for the
stability of the minimization problem (l.l). This implies that any attempt
to get rid of the Slater condition (1.6) is superfluous if the space X is
appropriate for (1.1).

This article is organized as follows. In Section 2, we recall some basic
notations concerning convex analysis. Section 3 is the main part of this
article. It contains a characterization of the solutions to the general mini
mization problem

min {f(x) : XE K:= Cn A -ld} (l.ll)

for a nonnegative convex function f The fourth section is devoted to
projection problems in Hilbert spaces. In Section 5, we apply the results
obtained in the previous sections to the specific nonnegative best interpola
tion problems in the L p norm.

Throughout this article we use the following conventions.
The kernel of a continuous linear map A is denoted by ker A, ran A is

the range of A, and A -Id is the preimage of dE Y. We denote by A * the
adjoint of A. As usual, we denote by X* the dual space of X and write
(x*,x) for the value x*(x) of X*EX* at XEX, xl-:= {X*EX*:
(x*,x)=O}. For j:X-+/Ru{oo}, the set epif:={[x,r]EXx/R:xEX,
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r;::;' f(x)} is the epigraph of f The interior of Be X and the closure of B
are denoted by int Band B, respectively. ~ + stands for the half line of all
nonnegative numbers.

2. PRELIMINARIES FROM CONVEX ANALYSIS

In this section we recall some related definitions from convex analysis.
Let X be a real locally convex linear topological space. The subdifferen

tial of a convex function f: X -+ ~ U { oo} at x is defined by

cf(x) := {x* E X* : x* - (x*, x) ~f - f(x)}.

Hence, x solves the following unconstrained minimization problem

min{J(u): UEX}

(2.1 )

iff 0 E cf(x). f is called subdifferentiable at x if cf(x) of- 0. A function f is
called Gateaux differentiable at x if there exists x* E X* such that

lim (f(x+ty)-f(x))/t=(x*,y),
1_0+

VyEX. (2.2 )

The x* in (2.2) is called the Gateaux derivative of f at x and is denoted by
Vf(x). In particular, when f is Gateaux differentiable at x, we have

cf(x) = {Vf(x)}.

For any Be X, denote by BO the polar of B, i.e., the set defined by

BO:= {x* E X* : (x*, x) ~ 1, VXE B}. (2.3 )

It can be veried that BO is a w*-closed convex set in X*. The bipolar of B
IS

When Be X is a cone with vertex 0, the polar BO is called the dual cone
of B. It can also be characterized by

BO:= {x* EX*: (x*, x) ~O, VXE B}. (2.4 )

For any Be X, denote by S(B; x) the translation of the support cone of
B at x, that is,

S(B;x):= U A(B-x). (2.5)
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In particular, S(B;x)=B+span(x) if B is a cone with vertex °and XEB.
It can be verified that S(B; x) is convex if B is convex. The dual cone of
S(B; x) is denoted by S O( B; x). Therefore, S O( B; x) = BO n x 1- if B is a cone
with vertex °and x E B.

For any Be X, the indicator function IBis defined by

{
O,

IB(x) :=
00,

if xEB;

otherwise.
(2.6 )

Hence, IBis convex and lower semicontinuous if B is a closed convex set.
For a convex function f, dom f := {x EX: f(x) is finite}. If dam f is not

empty, then f is called a proper convex function.

3. KUHN-TuCKER MINIMIZATION CONDITION

Suppose X and Yare two locally convex linear topological spaces and
X is real. Let A: X -+ Y be a continuous linear map and f: X -+ IR + u { 00 }

a proper lower semicontinuous convex function. For a fixed dE Yand a
closed convex set C c X, we consider the minimization problem

m :=min{j(x) :xEK:= CnA-1d}. (3.1 )

In this section, we give a necessary and sufficient condition for the existence
of Lagrange multipliers for (3.1). Here we call z* E y* a Lagrange
multiplier for (3.1) if

(z*, Ax - d) ~f(x) - m, VXEC (3.2)

In case A is an open map or Y = IR n
, we show that one sufficient condition

for the existence of Lagrange multipliers is the Slater condition

dE int AC. (3.3 )

When C is a cone with vertex °and d -# 0, it is proved later that, for the
modified problem

(3.4 )

the Slater condition (3.3) is satisfied automatically, where Co :=CnXo, Xo
is the smallest closed subspace containing C n A - I d, and A I' Ii are the
restrictions of A, f to Xu, respectively.

As usual, a map A is called open if it maps open sets to open sets.
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PROPOSITION 3.1. For the minimization problem (3.1), the function

gr: Y - IR + u {00 } : Y t-> inf f( C n A 'y)

is convex.

(3.5 )

Proof For y" Y 2 Edom(gr), 15>0, there exist x" x 2 Edomfsuch that

x j ECnA- 1y;,i=I,2.

For any 0 < t < I, x, := tXt + (1 - t) X2E C n A-Iy, with y,:= Ax,. Since f
IS convex,

f(x,)::::;; if(xd + (I - t) f(X2)::::;; tgr(yIl + (1- t) gj(Y2) + J.

Therefore, gr(tYI+(I-t)Y2)::::;;tgr(yIl+(I-t)gj(Y2) and gfis convex. I

As we see in the above proof, the convexity of gf has nothing to do with
the semicontinuity of f

PROPOSITION 3.2. If int A(dom f n C) =f. 0, then the gr defined by (3.5)
is continuous on int dom gr under either one of the follmving conditions:

(a) Y=IR";

(b) A is an open map.

In the proof of Proposition 3.2 we need the following lemmas.

LEMMA 3.1. Suppose g is a proper convex function. If there exists a
nonempty open set on which g is bounded above, then g is continuous on
int dom g.

Proof See [H75, p. 82]. I

LEMMA 3.2. Suppose g: IR" - IR u {00 } is a convex function. Then g is
continuous on int dom g.

Proof See [H75, p. 84]. I
Proof of Proposition 3.2. Since there exists dE int A (dom f n C), we

know from the definition of g/ that dE int dom gr' Therefore, by
Lemma 3.2, gf is continuous on int dom gr if Y = IR".

When A is open, as assumed, there exists x E C n A 'd n dom f, since f
is lower semicontinuous,

N(.~) := (A -I int AC) n {x :f(x) <f(x) + I}

is a nonempty open set on which f is bounded above.
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Therefore ~r is bounded above on the open set AN(.x) containing d.
Hence, g/ is continuous on jnt dom gr by Lemma 3.1. I

Remarks. (l) The continuity of gr on int dom gr does not depend on
the semicontinuity of f if Y = W.· .

(2) When X is a real Banach space and Y is of second category, the
condition in Proposition 3.2 that A is an open map is satisfied automati
cally since int A C # 0 implies ran A = Y. The assumption f ~ 0 is only
used to prove that g/ is finite on AC. For the constrained best interpolation
problem (1.1), f:= II . - z II, so the condition that f ~ 0 is always satisfied.

From the definition of g/ we know that the continuity of gr indicates the
stability of the minimization problem (3.1). So it is natural to request the
continuity of g/ at d and dE int AC. Proposition 3.2 provides sufficient
conditions for g/ to be continuous on int dom gr'

THEOREM 3.1. Suppose X o is a solution to (3.1). Then, there exists
z* E (AX)* such that

(z*, A(x - xo)) ~f(x) - f(xo), 'r/XEC (3.6)

iff the corresponding gr is subdifferentiable at d.

Proof Assume that (3.6) holds, set y := Ax. Then

(z*, y - d) ~f - f(xo), on C n A -Iy.

Since f(xo) = g/(d), it follows that (z*,y-d)~gr()')-gr(d) for all
y E AC, while this inequality always holds for y ¢ AC since for such y,
g/(y) = 00 by definition. Consequently, z* E ogr(d).

On the other hand, if z* E ogr(d), then

(z*, y - d) ~ gr(y) - gr(d).

For every xECnA-1y,

(z*, A(x - xo)) ~ g/(y) - gr(d).

Notef(x)~g/(y) for xECnA-1y and gr(d)=f(xd, so (3.6) holds. I
As a consequence of Proposition 3.1, Proposition 3.2, and Theorem 3.1,

we have the following theorem. The result for the case Y = /Rn appears
already in [N70].

THEOREM 3.2. Suppose dE int A(dom f n C) and either one of the
following conditions holds

(I) Y = W;

(2) A is open.
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Then X o E K := C n A Id is a solution to (3.1) iff there exists z~ E y*
such that

(zcf, A(x - x o)) ~f(x) - f(xo) (3.7)

for all XE C.

Proof It is clear that (3.7) implies that X o is a solution to (3.1).
Conversely, according to Proposition 3.1 and Proposition 3.2, the convex

function gj is continuous at d. Therefore, gj is subdifferentiable at d (cf.
[H75, p. 84]). Thus the proof is completed by applying Theorem 3.1. I

Consequently, we obtain the Kuhn-Tucker condition to characterize the
solutions to (3.1).

THEOREM 3.3. Assume the conditions of Theorem 3.2. Then X oE K:=
C n A- Id is a solution to (3.1) iff there exist y~ E SO( C, x o) and zcf E y*
such that either

(3.8 )

if f is continuous at some point in C or

(3.9)

if f is Gateaux differentiable at X o·

Proof As an immediate consequence of Theorem 3.2, X o E K IS a
solution to (3.1) iff it is a solution to

min {J(x) - (A*zo*, x) + le(x) : x EX}

for some ZJ'E Y*. Here Ie is the indicator function for C. Therefore, xoEK
is a solution to (3.1) iff

If f is continuous at some point in C, since 81e(xo) = So( C; x o), it follows
(cf. [H70, p. 25]) that

a(/ - A *z6' + I cl(xo) = 8f(xo) - A *z6' + So( C; x o).

If f is Gateaux differentiable at X o, by (3.7), for any x E C and any
O<t< I,

(z6', A(x - xo» ~ (/(xo + t(x - xo) - f(xo))It,
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since Xo + t(x - x o)E C. Let t go to 0, we obtain that
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'r/XEC.

This implies that A *zJ' - Vf(xo) E SO( C; xo). Therefore, in this case we
have (3.9). I

Remark. When Y = [R", as is pointed out in the remarks for Proposi
tion 3.2, gf is continuous on int dom gf without the assumption that f is
lower semicontinuous. Therefore, in this case, we still have (3.9) if f is
Gateaux differentiable at X o'

COROLLARY 3.1. Suppose X is a real Banach space and ran A is a locally
convex topological linear space of second category. If d is an interior point
of A C relative to ran A, then Xo E K is a solution to (1.1) iff there exist
yJ'ESO(C;Xo) and zJ'E(ranA)* such that (3.8) holds with f:= II· -zll.
Furthermore, if II· -zll is Gateaux differentiable at x o, then (3.8) becomes
(3.9).

So far, we have proved that for the minimization problem (3.1) with an
open map A or with Y= IR", the Lagrange multiplier exists when the Slater
condition (3.3) is satisfied. The following theorem shows that the Slater
condition (3.3) is satisfied automatically if C is a convex cone with vertex
0, d #- 0, and X is the smallest complete space for the minimization problem
(3.1). In the rest of this section, the convex set C in (3.1) is assumed to be
a closed convex cone with vertex 0, Xo is the smallest closed subspace
containing K:= C n A 'd, and Co := C n X o. We continue to denote
A I: X o -> AXo and f

l
, respectively, the restrictions of A and f to Xo.

THEOREM 3.4. Suppose in (3.1) that C is a closed convex cone with
vertex 0 and d #- O. Then X oE K := C n A ~ Jd is a solution to (3.1) iff there
exists zJ' E (A I Xo)* such that

'r/XE Co. (3.10)

Proof By its definition, Xo is the closure of span(K). Since
Aspan(K) = span(d), it follows that A,Xo = span(d) and AI Co = {td: t ~ O}.
It is clear that dE int A I Co because d #- O. We complete the proof by
Theorem 3.2. I

As immediate results of Theorem 3.3 and Theorem 3.4, we have

THEOREM 3.5. Assume the conditions of Theorem 3.4. Then X oE K :=
C n A - 'd is a solution to (3.1) iff there exist yJ' E cg n xt and zJ' E (A I Xo)*
such that either

(3.11 )
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if f
l

is continuous at some point in the cone Co or

'1.11 (x o) = A tzeT - yeT

iff
l

is Gateaux differentiable at x o'

(3.12 )

COROLLARY 3.2. Suppose X is a real Banach space and Y is a locally
convex topological linear space. Then, XoE K is a solution to (3.1) iff there
exist yeT E cg n xt and zeT E (A I X o)* such that (3.11) holds with f:= II· - zll.
If f l , the restriction of II· - zll, is Gateaux differentiable at xo, then (3.11)
hecomes (3.12).

When (3.3) is not satisfied, as is proved in the following, for any solution
x o, there exists z* E X* such that

and

(z*, A(x - x o)) ~ (z*, x - x o), 'r/XE Co.

(3.13 )

(3.14 )

THEOREM 3.6. Suppose X o is a subspace of X and C c X is a convex cone
with vertex O. Let Co := C n X o. If zeT E (AXo)* is such that A *zeT ~f on Co
and f(xo) = (zeT, Axo)for some Xo E Co n int dom f, then there exists z* E X*
such that (3.13) and (3.14) hold.

Proof Let

B:= {[x, (zeT, Ax)] E Xx IR : x E Co}.

So B is convex and B n int epi(f) = 0· Since int dom f"# 0 and f is lower
semicontinuous, we have that int epi(f)"# 0. Therefore there exist y* E X*
and AE IR, not all zero, such that

(y*, x) + Ar ~ (y*, u) + A(zeT, Au) (3.15 )

for all [x, r] E epi(f) and u E Co'
If, in (3.15), we take X=U=XoECo, then we obtain A(r-(z6,Axo))~0

for all r > f(x o)' So A~ O. If A= 0, then

'r/xEdomf,

since X oE int dom f, this implies y* = 0 and we get a contradiction.
Therefore, A> O. Without loss of generality, assume ), = 1. Thus we have

(y*, x) + f(x) ~ (y*, u) + (Z6, Au),

and (- y*, x - x o)~f(x) - f(xo) for all x EX.

(3.16 )
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If we take x = X o in (3.16), we obtain

(zcf, A(u - xo)) ~ ( - y*, u - x o), 'v'UE Co'

With the choice z*:= -y*, we obtain (3.13) and (3.14). I

THEOREM 3.7. Let Xo := A -I span(d). Then X oE C n A -ld n int dom f
is a solution to (3.1) iff there exists z* E X* such that

(z*, x-xo)~f(x)- f(xo), 'v'XEX, (3.17)

and (z*, x-xo)~O on CnXo.

Proof As proved in Theorem 3.4, there exists z~ E (AXo)* such that
A *z~ - (zcf, d) ~f - f(xo) on C n Xo. The proof is completed by applying
Theorem 3.6 to z~ and f - f(x o)+ (z~, d). I

4. PROJECTION PROBLEM IN HILBERT SPACES

Let X be a Hilbert space and K c X a closed convex set. For z EX,
PK(Z) E K is called the projection of z to K if

It is well known that

'v'XEK.

'v'XEK. (4.1 )

Equivalently, X o is the projection of z to K iff there exists Yo E SO(K; x o)
such that z = Xo + Yo.

In this section, we consider the special case where the convex set K is the
intersection of a closed convex set with a linear manifold. Suppose Y is a
locally convex linear topological space and A: X ...... Y is a continuous linear
map. For dEAC and a closed convex set CcX, denote by K the closed
convex set C n A -'d. The goal of this section is to derive the following
more informative formula

(4.2)

for any Zo E ran A * satisfying

(4.3 )

Actually, one only needs to prove that there exists ZoE ran A * satisfying
(4.2) since (4.3) implies Pc(zo+z)=PK(z) as is verified in the following.
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Let XI := Pe(Zo + z) E A -'d with Zo E ran A *. Then for every XE C,

Especially, for X E K, since X - XI E ker A and (zo, x - XI) = 0, we have

This means that x I = PK(Z) by (4.1).

THEOREM 4.1. Suppose X is a real Hilbert space, Y is a locally convex
linear topological space of second category, A: X ....... Y is a continuous linear
map and C c X is a closed convex set. If d is an interior point of A C, then
Xo = P K(Z) iff there exists Zo E ran A * satisfying Pc(z + zo) E A - 'd such that

Xo = Pe(zo + z). (4.4)

Proof If ZE K, then let Zo = °in (4.4). Otherwise, let f:= II· - zll, then
Vf(xo) = (xo-z)/f(xo)· From Corollary 3.1 we know that XO=PK(z) iff
there exist Zo E ran A * and Yo E SOl C; x o) such that Xo - Z = Zo - Yo because
f(xo»O. With this we obtain (4.4) from (4.1). I

As mentioned in Section 1, when Y is a Hilbert space, the conclusion
corresponding to Theorem 4.1 has been reached in [C89].

THEOREM 4.2. Suppose X o is the smallest closed subspace of X containing
K:= C n A Id and C c X is a closed convex cone with vertex 0. Denote by
A I: X o ....... AXo the restriction of A to X o and Co = C n X o. Then

(4.5 )

for any zoEranA I* such that Peo(z+zo)EA Id.

Proof If zEK, let zo=O in (4.5).
For Z¢ K, if d = 0, then K = C n ker A is also a closed convex cone with

vertex 0. Suppose Z= PXo(z) + ZI and P xo = PCoPxo(z) + Z2 for some ZI EXt
and Z2 E cg n (PcoPxo(z))-l. Then we have

(4.6)

Since ZI +z2ECgn(PcoPxo(z))\ the equality PK(Z)=PcoPxo(z) follows
from (4.1). So we only need to choose zo=O since PcoPxo=Pco'

Ford # 0, take f: = II . - ZII in Corollary 3.2. Suppose Z= Z1 + Z2 for
some Z1 E X 0 and Z2EXt. Then the restriction of f to X 0 is
fl=(II· _z,11 2+ Ilz2112)1/2. So the Gateaux derivative for f

l
at Xo is
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(4.7)

(xo- Zd/.fI(xo). From Corollary 3.2 it follows that X o = PK(Z) iff there exist
Yo E cg n xt and Zo E ran A 1* such that

Xo - Z I =Zo - Yo

because fi(x o) > O. By (4.1) we obtain

PK(z) = PCo(Pxo(z) + zo) = PCo(z + zo),

since PXo is linear and PCo PXo = Pco'

Now suppose Y=lR n and Ax:=L:7=1 (<Pj,x)e j for <PjEX, where e j is
the ith unit vector for IR n

. Then ran A * = span( <P;). Theorem 4.2 implies

THEOREM 4.3. Suppose X is a Hilbert space and A: X -.. IW is defined by
Ax:= L:7~ 1 (<P j, x) e j. Assume C is a closed convex cone with vertex 0 and
dElR n

. Let K:=CnA~ld. Then for ZEX,

PK(Z)=Pco(Z+jtl c(i)<P}

for any c E W satisfying Pco(z + L. c(i) <P;) E A -ld. Here Xo = (K 1-)1- and
Co=CnXo·

Proof Since Pxo is a linear map, AI =L ejPxo<P j' by Theorem 4.2 we
have (4.7). I

EXAMPLE. We apply Theorem 4.3 to the problem

min{llx-zll :xECnA-1d}, (4.8 )

if c~O;

where

C:= {xEL 2 [0, 3] : x ~O},

Ax:=L:7~1 (<Pj,x)e j , <P j (t):=(I-lt-iJ)+, i=1,2,

d = [1,0] E 1R 2
, and z(t) := t 2

•

Since <P 2(t»0 for l<t<3, it follows that Xo=X[0.I)L2 [0,3]. From
Theorem 4.3 we know that the solution X o has the representation

xo(t) = (12 - ct)+ X[o. 1](1)

because <P1(t) = t on [0, I]. Since

I c
4-3'

if c~ I;

if 0 < c < I,

(4.9)
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by the interpolation condition, we obtain c = - 9/4. So the solution is

(4.10)

5. NONNEGATIVE BEST INTERPOLATION IN L p NORM

In this section, we apply the results obtained in the preceding sections to
the nonnegative best interpolation problem in Lp(Q) for 1 < P < efJ.

Suppose Y is a locally convex linear topological space, A: Lp(Q) ---+ Y is
a continuous linear map, and C is the cone consisting of all nonnegative
functions in Lp(Q). For a nonzero dEAC, we consider the nonnegative best
interpolation problem

min{llxll :xEK:=CnA-'d}. (5.1 )

LEMMA 5.1 [H70]. f:= (lip) II·II P is Gateaux d(fJerentiahle everywhere
with the Gateaux derivative Vf(x) = Ixl P I sgn(x).

Now we are ready to give the representation of the solution of the
problem (5.1). As an immediate consequence of Corollary 3.1 we have the
following theorem.

THEOREM 5.1. Suppose dE int A C and Y is of second category. Then X o
is the solution to (5.1 ) (II there exists zJ' E ran A * such that

(5.2)

Proof From Corollary 3.1 it follows that XoE K is the solution to (5.1)
iff there exists z* E ran A* and y* E CO n x~ such that

where f:= 11·11. By applying Lemma 5.1 and the Chain Rule, we obtain

XG '= zJ' - yJ',

where zJ' = IIxol1 1
- P z*, yJ' = Ilxoll' P y*.

Since YJ'EConx(f, it follows that yJ':::;;O and YJ'(t)=O if Xo(t) >0.
Therefore

(5.3 )

Let q:= pl(p - 1). For the case Y = 1R" and A:= L;'~ I e;CfJ, with
CfJiE L,/(Q), [M85] obtains the characterization (5.2) under the following
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condition: There exists gE K such that CfJI, ... , CfJn are linearly independent
on

G := {t E .Q : g( t) > °}.
Actually, the above condition is equivalent to dE int A C as proved in the
following proposition.

PROPOSITION 5.1. When Y=W and A=L:7~1 e,CfJ" dEintAC iff there
exists g E K such that CfJ l' ... , CfJ n are linearly independent on

G := {t E .Q : g( t) > °}.
Proof Suppose cP I' ... , CfJn are linearly independent on G for some g E K.

If d rJ int A C, since A C is convex and Y = IRn, there exists nonzero hE IRn

such that

(b, d)::::; (b, Ax),

Since 0 E C and dE A C, it follows that

(b, d) = 0::::; (h, Ax),

'rtXE C.

VXE C.

Let s :=A*b=L:7~1 b,CfJ,=s+ -L, then s~PEC. Therefore, we have

(5.4 )

This shows that s ~ O. Hence, (s, g) = (b, d) = 0 implies that

s=O on G.

This contradicts that CfJ I' ... , CfJn are linearly independent on G.
Conversely, if dE int Ac, then there exist g, E C, i = 0, ..., n, such that

(J := conv(Ago, ..., Agn)

is a simplex such that dE iot (J. Therefore, there exist 0< t, < I, i = 0, ..., n,
such that

n

d= I t,Ag;
,~o

and L:7~ ° t, = I. Choose

640/73/2-2

g:= L tig,·
,~o

(5.5 )
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Since gEC and Ag=:L tiAgl=d, it follows that gEK. Note g(t)=O
implies that gi (t) = 0 for any i. Hence, if there exists hEIR" such that
s := :L;'~ I hiqJi = 0 on G, then

(h, Ag,) = (A *h, g,) = (s, g,) = 0, i=O, ..., n.

Since dE int (Y, Ag J - Ago, ... , Ag lI - Ago are linearly independent. There-
fore, h = O. Thus, we finish the proof. I

In general, we have the following result:

THEOREM 5.2. Let X o he the smallest closed suhspace contammg
K:= C n A Id. Denote hy AI: X o --+ AXo the restriction of A to Xo. Then X o
is the solution to (5.1) iff there exists 26 E ran A 1* such that

X =(~*)liIP I)EA Id
. 0 -0 + I' (5.6 )

(5.7 )

Proof As shown in Theorem 3.4, d i= 0 implies that dE int A I Co. Since
A I X o = span(d), (5.6) is asserted by Theorem 5.1. I

When Y=IR", A:=:L;'~leiifJi for ifJiELq(Q), we have the following
corollary as an immediate result of Theorem 5.2.

COROLLARY 5.1. X o is the solution of (5.1) (If there exists (' E IR" such
that

(

m )lilP I)

X o = i~1 (e l, qJ) qJi + E A 1- 'd,

where X o is the smallest closed suhspace of X containing C n A ld and

A I := :L;'~ I eiqJi is the restriction of A to X o-
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